MATH2048 Honours Linear Algebra II

Midterm Examination 2

Please show all your steps, unless otherwise stated. Answer all five questions.

1. Let $T: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ be a linear operator defined by:

$$
T\left(a+b x+c x^{2}+d x^{3}\right)=(b-d) x+(c+d) x^{2}+(d-a) x^{3} .
$$

Find all eigenvalues of T, as well as their algebraic multiplicity $\mu_{T}(\lambda)$ and geometric multiplicity $\gamma_{T}(\lambda)$. Determine whether T is diagonalizable.
2. Let $V=M_{2 \times 2}(\mathbb{R})$ and $T: V \rightarrow V$ be the linear operator defined by $T(M)=A M B$, where $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 0 \\ 1 & -1\end{array}\right)$.
(a) Find a polynomial $g \in P_{3}(\mathbb{R})$ such that $T^{4}=g(T)$. (Hint: The CayleyHamilton Theorem.)
(b) Let $M_{0}=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$ and W be the T-cyclic subspace of V generated by M_{0}. Show that $T^{2}\left(M_{0}\right)=a_{0} M_{0}+a_{1} T\left(M_{0}\right)$ for some scalars $a_{0}, a_{1} \in \mathbb{R}$. Find $\operatorname{dim}(W)$ and the characteristic polynomial of $\left.T\right|_{W}$.
3. Let $T=L_{A}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be a linear transformation where $A=\left(\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right)$ and $\lambda \in \mathbb{C} \backslash\{0\}$ is a nonzero complex number.
(a) Find all 1-dimensional T-invariant subspace of V.
(b) Show that W is a 2-dimensional T-invariant subspace if and only if $W=$ $\operatorname{span}\left(\left\{(x, y, 0)^{t},(y, 0,0)^{t}\right\}\right)$ where $x \in \mathbb{C}$ and $y \in \mathbb{C} \backslash\{0\}$.
(Hint: If W is a T-invariant subspace of V, then W is also $(T-\lambda I)$-invariant.)

PLEASE TURN TO THE NEXT PAGE

4. (a) Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in M_{n \times n}(\mathbb{C})$, where $a_{i j}$ is the i-th row, j-th column entry of A. Let λ be an eigenvalue of A. Show that:

$$
\lambda \in \bigcup_{1 \leq i \leq n}\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq \sum_{1 \leq j \leq n, j \neq i}\left|a_{i j}\right|\right\}
$$

(Hint: Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{t}$. Expand $A \mathbf{x}=\lambda \mathbf{x}$. Consider the i-th entry.)
(b) Let V be a n-dimensional vector space over \mathbb{C}, with an ordered basis $\beta=$ $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$. Given that $n \geq 100$. Consider a linear operator $T: V \rightarrow V$ defined by:

$$
\begin{aligned}
& T\left(\mathbf{v}_{1}\right)=a_{1} \mathbf{v}_{1}+b_{11} \mathbf{v}_{2}+b_{12} \mathbf{v}_{n} \\
& T\left(\mathbf{v}_{n}\right)=a_{n} \mathbf{v}_{n}+b_{n 1} \mathbf{v}_{1}+b_{n 2} \mathbf{v}_{n-1} \\
& T\left(\mathbf{v}_{k}\right)=a_{k} \mathbf{v}_{k}+b_{k 1} \mathbf{v}_{k+1}+b_{k 2} \mathbf{v}_{k-1} \text { for } k=2,3, \ldots, n-1 .
\end{aligned}
$$

Given that $\left|a_{k}\right|>\left|b_{k 1}\right|+\left|b_{k 2}\right|$ for all $1 \leq k \leq n$. Using (a), show that all eigenvalues of T are non-zero.
5. Let $T: V \rightarrow W$ be a linear transformation between the vector spaces V and W over \mathbb{C}. Let $T^{*}: W^{*} \rightarrow V^{*}$ be the dual map of T defined by $T^{*}(g)=g \circ T$. Prove or disprove that $(W / R(T))^{*}$ is isomorphic to $N\left(T^{*}\right)$. If it is, please construct an isomorphism between $(W / R(T))^{*}$ and $N\left(T^{*}\right)$. If it is not, please give a rigorous proof. Please explain your answer with details.

END OF PAPER

